
Empathetic Processing in Cybersecurity: 
A Human-Centric Data Analytics 
Paradigm 
Charles D. Herring 

November 20, 2025 

Abstract 
Security Operations Centers (SOCs) today face an overwhelming flood of security alerts 
– on the order of thousands per day – yet struggle to derive actionable intelligence, 
with studies showing that over two-thirds of alerts go unattended and the majority are 
false positives [1]. Empathetic Processing (EP) is a proposed paradigm that addresses 
this “data overload, insight scarcity” problem by modeling the analytics pipeline on 
human communication. In an EP framework, AI-driven systems “listen” to diverse data 
sources with deeper comprehension (using NLP to interpret intent and context), 
resolve dissonance by correlating and reconciling events over time (using graph-based 
link analysis to connect related evidence), and “speak” their findings in narratives 
tailored to human stakeholders (translating raw data into investigation timelines, 
executive summaries, and compliance reports). Key innovations enabling EP include 
the predestination of data – structuring and labeling data at the moment of ingestion 
with all future analytic and compliance needs in mind – and temporal link analysis – 
constructing a time-sequenced graph of entities and events to support long-horizon 
correlations and hypothesis testing (akin to mapping an adversary’s kill-chain [4]). By 
integrating natural language processing, expert system rules, and machine learning 
over a unified knowledge graph, Empathetic Processing emulates the intuition of an 
expert analyst at machine speed. This paper explores the design principles of EP and 
details how the WitFoo cybersecurity platform implements these ideas to achieve 
significant reductions in alert noise, faster incident resolution, and improved forensic 
readiness. We evaluate EP’s impact on SOC efficiency and accuracy and discuss future 
research directions (such as leveraging large language models) that build on this 
human-centric analytics approach. 

Introduction 
Modern SOCs collect a vast volume of security telemetry – network logs, endpoint 
events, alerts from dozens of tools – but converting this raw data into useful insight is 
increasingly challenging. Analysts are inundated by more alerts than they can possibly 



investigate. A recent global study of 2,000 SOC analysts found that teams receive 4,484 
alerts per day on average, yet cannot adequately review 67% of them, with 83% of 
those investigated turning out to be false positives [1]. This alert fatigue leads to critical 
threats being missed or discovered too late, as genuine signals are lost in the noise. 
Paradoxically, organizations are “data rich but information poor,” a situation where 
adding more sensors and tools can actually hinder security by overwhelming human 
analysts instead of helping them. 

A major reason for this gap is that conventional security data pipelines and SIEM 
(Security Information and Event Management) systems are not designed with human 
cognitive processes in mind. Traditional pipelines often perform minimal parsing and 
correlation upfront, leaving the burden on analysts to manually piece together context 
from raw logs or to write complex correlation rules after data is stored. This right-heavy 
(or right-biased) approach to data processing maximizes initial ingestion speed at the 
cost of context: data is collected quickly but understood slowly, if at all. The result is a 
deluge of unfiltered alerts and a reactive posture. On the other hand, a left-heavy 
approach would do more comprehensive processing at ingest time, normalizing and 
enriching data as it arrives, but this is difficult to achieve with traditional, brittle parsing 
techniques and might seem to conflict with performance needs. 

This challenge is analogous to the famous CAP theorem in distributed systems, which 
states that consistency, availability, and partition tolerance cannot be fully achieved 
simultaneously [2]. In an analytics pipeline context, we often tradeoff between depth of 
understanding (consistency of insight) and real-time availability of data. Trying to 
fully parse and contextualize every event (for consistency of insight) can conflict with 
ingestion speed and scalability (availability of data for querying). Traditional SIEMs have 
erred on the side of availability, simply ingesting and indexing data (to avoid missing any 
input), but thereby sacrificing immediate consistency of insight – the data isn’t truly 
understood in context when it’s stored. This leads to a heavy workload later (in queries 
or during incidents) and often inconsistent analyses between analysts. 

Empathetic Processing (EP) is a paradigm that seeks to resolve this trade-off by 
reimagining the security data pipeline as a human-like process, implemented with AI. 
The term “empathetic” signifies that the system strives to understand data in context 
and communicate results in a human-relatable form, much like a skilled investigator 
or colleague would. Instead of treating each log line or alert in isolation, an EP-driven 
system attempts to comprehend the intent and significance behind an event 
(“listening”), place it in the broader timeline and connect it with related events 
(“resolving dissonance”), and then output a coherent story or actionable report about 
what is happening (“speaking”). 

By shifting more intelligence to the left of the pipeline – parsing data with awareness of 
future needs – EP aims to dramatically reduce the noise and cognitive load in the SOC. 



For example, if multiple tools report the same incident from different angles, an EP 
system would recognize the redundancy and merge those into one storyline, rather 
than present them as separate alerts. If an event is only meaningful in combination with 
others, EP will hold it in context until that meaning emerges, instead of generating a 
premature alarm. And when reporting, EP will tailor the detail to the audience: an 
analyst gets a full sequence of technical evidence, while an executive gets a summary 
of impact and risk, all derived from the same underlying data. 

This paper is structured as follows. First, we provide background on the current SOC 
data overload problem and the limitations of traditional processing approaches, 
establishing the need for a new paradigm. Next, we introduce the conceptual 
framework of Empathetic Processing, breaking it down into its three stages: 
Empathetic Listening, Dissonance Resolution, and Empathetic Speaking. We then 
describe how these concepts are concretely implemented in WitFoo’s cybersecurity 
platform, which serves as a case study for EP in action – including details on its 
adaptive parsing engine, knowledge graph correlation, and automated reporting 
capabilities. We present results and observations from deployments and testing, 
showing how EP can improve detection of complex attacks and reduce false positives, 
while also yielding efficiency gains in storage and analyst workload. Finally, we discuss 
the broader implications of adopting Empathetic Processing in SOCs and outline future 
research directions, such as integrating large language models for even more intuitive 
threat insights. 

In summary, Empathetic Processing offers a path to transform SOC operations by 
bridging the gap between raw data and human understanding. By ingesting data “with 
empathy” (retaining context, intent, and purpose) and outputting findings “with 
empathy” (in human-friendly narratives), EP can help organizations leverage their 
ocean of security telemetry in a far more effective way – extracting high-fidelity 
intelligence in real time, and enabling analysts and executives alike to make faster, 
better-informed decisions in the fight against cyber threats. 

Background: From Data Deluge to Context Crisis in 
SOCs 
The volume of security data generated in modern IT environments is enormous and 
growing rapidly. Large enterprises may log millions of events per day, including 
network connections, user logins, file access events, application logs, threat 
intelligence feeds, and so on. Each of these events by itself is typically low-value – a 
single log line rarely indicates a full attack. The value comes from connecting dots 
across logs and over time. Unfortunately, prevailing security monitoring approaches 
have not kept pace with this need for contextual integration. 



Traditional SOC tools like SIEMs are essentially giant data collectors that emphasize 
being able to ingest anything. The myriad data sources come in all formats and 
languages (one device might log “Failed password for user X from IP Y”, another emits a 
JSON object about a blocked port scan). SIEMs usually rely on a plethora of custom 
parsers or regex-based rules to pull out fields from these heterogeneous logs. Writing 
and maintaining these parsers is a labor-intensive process – every time a log source is 
updated or a new product is added to the environment, the parsing rules might break. 
This leads many organizations to only parse what they consider the most important 
fields and largely ignore the rest as unstructured text. 

Moreover, most SIEMs and alerting systems default to a syntax-driven approach: they 
trigger alerts based on simple patterns or thresholds (e.g., 5 failed logins from an IP in 
10 minutes triggers an alert). They lack understanding of semantics or context. For 
example, if the same user normally has a few failed logins every Monday morning, a 
human analyst would recognize that pattern as benign (perhaps just mistyped 
passwords after the weekend). A typical detection rule might flag it every time 
regardless, because it lacks the contextual memory of past occurrences or the 
understanding of typical behavior. 

All these factors contribute to an excessive number of low-fidelity alerts. As noted 
earlier, industry surveys report thousands of daily alerts per SOC, of which a large 
fraction are redundant or irrelevant [1]. Analysts cope by ignoring many alerts or 
turning off noisy rules [1], which is dangerous because real threats can hide in the 
disabled noise. It is clear that a more intelligent filtering and correlation is needed at an 
earlier stage. 

Another challenge is that as data volume grew, many pipelines adopted a “store first, 
ask questions later” mentality: shove everything into a data lake or index, and let 
analysts query it or run correlations after the fact. This certainly maximizes flexibility – if 
you later decide you care about a particular event, you can search it – but it comes at 
the cost of overwhelming analysts in the moment and delaying when insights are 
formed. Insights often only emerge during or after an incident, rather than in real-time 
as the attack unfolds. 

A contrasting approach is to do more processing up front (“left” in the pipeline). 
WitFoo’s research describes this in terms of left-leaning vs. right-leaning processing [3]. 
A left-leaning pipeline invests more computation at ingest time to parse and 
contextualize data immediately, effectively performing continuous analysis. The data is 
organized and enriched as it streams in, so that by the time it’s stored and reaches an 
analyst, much of the noise is trimmed and related events are already linked. In a right-
leaning pipeline, by contrast, data is ingested with minimal understanding (maybe just 
tagged by source and time), and any heavy analysis is done later on-demand or in 



periodic batches. Traditional SIEMs are largely right-leaning: they accumulate raw 
events and later apply correlation jobs or manual queries. 

There is a spectrum here rather than a binary choice, but the trend in modern security 
operations is shifting toward the left – doing more smart processing in real time. 
Techniques like streaming analytics, complex event processing, and user/entity 
behavior analytics (UEBA) all reflect this shift. However, many of these techniques are 
bolted onto older systems and still operate on fairly rigid rules or models. 

The concept of Empathetic Processing pushes this idea further by asserting that we 
should treat incoming data the way a skilled human analyst would treat a tip or clue. 
The analyst would parse the meaning of the clue, check how it fits with other 
information, maybe hold onto it if it’s unclear until more context arrives, and later 
explain what happened in a cohesive narrative. EP aims to embed those behaviors into 
the pipeline itself, via automation. 

To make this concrete: imagine an endpoint logs “Malware X detected and 
quarantined” at 10:00, and a firewall log at 10:05 shows an outgoing connection from 
that endpoint to an IP known for command-and-control. A typical SIEM would generate 
two separate alerts (one malware alert, one C2 alert), possibly to two different 
dashboards, unless a custom correlation rule is in place. An EP-driven system would 
interpret the first log as “host infected but malware stopped” and remember that host’s 
state, then see the second event and realize “despite quarantine, this host is contacting 
a bad IP – maybe the infection wasn’t contained.” Instead of two alerts, it might raise 
one incident: “Host A is exhibiting post-infection behavior, indicating a possible active 
compromise.” This incident would include both pieces of evidence and an explanation 
of the concern. In effect, EP has fused the events into a story that is more meaningful 
than the sum of its parts. 

By handling such correlations automatically and continuously, EP reduces the cognitive 
load on humans. Notably, this approach aligns with the direction of some recent 
research and advanced tools which emphasize knowledge graphs and narrative 
generation for security. For example, Afzali Seresht et al. [3] propose a system that 
builds a knowledge graph from alerts and generates natural-language incident reports 
to aid analysts, highlighting that current alert streams are often “insufficient 
information” and need to be turned into “summarized stories” for effective 
understanding [3]. This underscores that merely collecting data isn’t enough – 
assembling disparate pieces into an overall analytic picture is the real challenge for 
situational awareness. 

In summary, the SOC context as of now is one of too much data, not enough clarity. 
Analysts are expensive and scarce, so their time must be used effectively, focusing on 
true positives and high-risk situations. Empathetic Processing is motivated by this 



reality: we need our machines to do more of the grunt interpretative work, so that 
human experts can make decisions with the benefit of fully baked context. In the next 
section, we outline the theoretical framework of how Empathetic Processing tackles 
this, before diving into implementation details and results. 

Empathetic Processing: Conceptual Framework 
Empathetic Processing breaks the analytical process into three high-level stages, 
inspired by the way humans handle information in a conversation or investigation: 

1. Empathetic Listening – Understanding each incoming message or event in 
depth and in context. 

2. Dissonance Resolution – Reconciling conflicts and connecting threads among 
many messages over time. 

3. Empathetic Speaking – Communicating the results of analysis in a clear and 
contextually appropriate manner to humans. 

These stages are logical parts of a continuous cycle rather than strictly sequential 
phases; an operational system will interweave listening, correlating, and outputting 
findings in near-real-time. However, this breakdown is useful for discussing the design 
principles. 

Empathetic Listening 
Empathetic Listening in the context of a SOC means that the system doesn’t just ingest 
data, it truly strives to understand it. This goes beyond parsing. It involves capturing the 
meaning, context, and intent behind each event. 

There are two primary components to Empathetic Listening: 

• Signal Comprehension: Interpreting the content of each event or message. 

• Contextualization (Who/Where/Why): Understanding the source and 
circumstances of the event. 

Signal Comprehension. Traditional log parsing might extract fields like “timestamp, 
source IP, destination IP, action” from a firewall log line. Empathetic Listening goes 
further by using techniques from natural language processing (NLP) and semantic 
analysis to interpret what the event signifies. WitFoo’s system, for instance, employs an 
adaptive parsing engine that treats any text-based log or alert similar to a sentence in 
human language, identifying key actors, actions, and objects. It creates a structured 
representation (often referred to as a semantic frame or artifact) for that event. This 
representation is akin to a tuple or small record like: {EventType: MalwareDetection, 
SourceHost: X, MalwareName: Y, Outcome: Quarantined, ...}. Crucially, if the incoming 



data is unstructured or semi-structured, the parser can dynamically figure out the 
structure by recognizing patterns it has seen before or by researching new patterns. 
This is achieved by generating a fingerprint of the message (a hash that represents its 
structure and key tokens) and looking it up in a knowledge base of known log formats 
[3]. If it’s new, a learning process can be triggered (potentially with human-curated 
input) to add understanding of this new message type. 

By comprehending each signal in detail, EP ensures no piece of information is lost in 
translation. In many pipelines, if a parser doesn’t know a field, it might drop it or store it 
as blob text that is rarely used. Empathetic Listening aims to avoid that by either 
knowing what each field means or at least preserving it in the structured artifact with a 
placeholder meaning so it can be leveraged later. This is part of the predestination of 
data philosophy – treating each data point as if we already anticipate the questions that 
might be asked of it in the future. For example, even if a certain log field (say an “alert 
ID”) is not immediately needed for correlation, the system might tag and retain it 
because it could be important in a forensic audit or for deduplicating repeated alerts. 

Contextualization of Source and Intent. When a human listens to someone speaking, 
they interpret the tone and intent (is this person warning me? Asking for help? Joking?). 
Similarly, an EP system looks at a security event in context of who/what generated it 
and why. For instance, a Linux server’s log entry “kernel panic occurred” would be 
interpreted differently from an IDS alert “kernel panic exploit attempted” – one is an 
observation of a failure, the other is a security warning. The system should attach 
metadata indicating that the IDS alert is an intrusion detection type message, likely 
meaning malicious activity was observed, whereas the kernel log is a system event that 
might indicate a crash (not necessarily malicious). This kind of context is gleaned by 
maintaining a taxonomy of sources and event types. WitFoo’s platform, for example, 
identifies the product or subsystem that produced a log (via the fingerprint mapping) 
and knows, for example, that “Cisco ASA syslog type 713904” means an ACL was 
denied. It then infers intent – in this case, that the firewall intentionally blocked traffic. 
That intent can be relevant: a blocked traffic event might be considered lower priority 
(since it was prevented) unless it correlates with many other attempts, whereas an 
allowed suspicious traffic event might be higher priority. 

The contextualization also includes tagging data with information like the criticality of 
the source (is the source host a domain controller or a guest laptop?) and any known 
relationships (was this host already flagged in another alert recently?). By doing this 
during listening, each event artifact comes with a rich “header” of context. 

Stateful Listening. Another crucial aspect is that listening is not memoryless. 
Empathetic Listening keeps transient state as events stream in. For example, if 100 
events in a row all pertain to Host A, the system doesn’t forget Host A after processing 
each event – it keeps a notion that “Host A is active in the current timeframe and here 



are the things happening to it.” This short-term memory is later essential for correlating 
events (in the Dissonance Resolution stage), but it’s prepared during listening. In 
practical terms, as WitFoo’s engine processes events, it populates an in-memory graph 
or index keyed by entities (like hosts, user accounts, etc.), so it can quickly lookup if a 
newly seen IP address or username has appeared recently and what was noted about 
it. This is analogous to a detective recognizing a name that came up earlier in a case. 

All of the above means Empathetic Listening produces a stream of normalized, 
enriched event records. These records are consistent (all follow a common schema 
internally, regardless of source format) and annotated with context. Already at this 
stage, a lot of “noise reduction” can happen. Duplicate messages or repetitive events 
can be suppressed by the system when it knows they add no new information. (For 
instance, some antivirus software might log the same blocked malware event every 
hour – EP might record it once and note the count, instead of treating them as separate 
incidents.) As a result, the volume of data passed on to the next stages is much smaller 
than the raw input volume, typically by orders of magnitude. But unlike a simplistic 
filter, EP hasn’t thrown data away arbitrarily – it has absorbed the data into its 
knowledge base in a structured way. Thus, nothing of significance is lost; rather, it’s 
organized. 

In short, Empathetic Listening equips the system with a rich understanding of “what is 
being said” in the environment at any given moment. This lays the foundation for 
connecting the dots, which is the next challenge. 

Dissonance Resolution 
As the system listens to many sources over time, it inevitably encounters events that 
relate to one another or sometimes conflict with each other. Different systems may 
give different accounts: one might say “File cleaned” while another reports “Malware 
still present”. Or an IDS might flag something as an attack that a sandbox later decides 
was benign. Empathetic Processing doesn’t take each alert at face value; instead, it 
performs Dissonance Resolution – essentially the correlation and analytic reasoning 
phase. 

The core tool for this in WitFoo’s implementation is a form of graph-based analysis, 
specifically referred to as Temporal Link Analysis (TLA). In essence, the platform 
maintains a dynamic graph (or hypergraph) where nodes represent entities of interest 
(devices, IP addresses, user accounts, files, processes, etc.) and edges represent 
relationships or events (communications between devices, a user logging into a 
device, a process creating a file, etc.). Every event artifact from Empathetic Listening is 
integrated into this graph. If the event mentions a new entity, that node is added. If it 
describes an interaction, an edge is created or updated. The “temporal” aspect means 



that the graph isn’t static – edges can be time-stamped or materialized as time-series if 
needed, and the analysis considers sequences and timing. 

Using this graph, the system can do multi-event correlation much more powerfully 
than simple pairwise rules. It can discover that a series of benign-looking events form a 
suspicious chain when viewed together. This is akin to how an investigator forms a 
hypothesis of a crime by linking clues. In fact, EP explicitly borrows from criminology by 
applying theories of attack (similar to known tactics, techniques, and procedures in 
frameworks like the Lockheed “kill chain” model [4]) on the graph. For example, a 
theory might be: “If a host shows signs of compromise (malware alert) and later 
connects to an internal server it never accessed before, consider lateral movement.” 
The system would then attach a label or raise an incident hypothesis for that host 
possibly moving laterally. 

Incident Hypotheses and Conflict Checking. As events accumulate, the system 
forms clusters of related events that could constitute incidents. One incident may be 
“Host A compromise by malware X”, another might be “Credentials of user B 
potentially stolen”. An event can belong to multiple clusters if it appears relevant to 
several hypotheses. The system continually evaluates these hypotheses: does new 
evidence strengthen or weaken them? Are any mutually exclusive? For instance, if one 
hypothesis is “Host A’s malware was successfully removed at 10:00” and another is 
“Host A exfiltrated data at 10:05,” there is a conflict (if the malware was removed, 
exfiltration shouldn’t happen). The system would flag this dissonance and perhaps 
modify the hypothesis: maybe another hidden malware was on Host A that wasn’t 
removed, explaining exfiltration. This process is akin to a detective reconciling witness 
statements – if two stories conflict, either one is wrong or there’s an additional factor to 
uncover. The EP system uses its knowledge base and logic to resolve such conflicts, or 
at least to highlight them for analysts if automated resolution isn’t confident. 

Consistency and Standardization. One reason EP can resolve dissonance well is that 
everything is translated into a common semantic language internally. A big barrier in 
traditional correlation is that different tools talk in incompatible terms. But after 
Empathetic Listening, logs and alerts have been normalized. This means if two sources 
talk about the same object, the system can recognize it. It also means ambiguous 
terms get clarified. For example, one log might say “error”, another says “critical”, 
another uses a numeric severity; the EP system would map these into a single severity 
scale or concept so they can be compared directly. This standardization is crucial for 
conflict resolution – the system won’t mistakenly think two events are unrelated just 
because one called it “malware” and the other called it “virus”; it knows those are 
essentially the same category. 

Temporal Reasoning. The “temporal” in TLA also emphasizes that order and timing of 
events are considered. The system doesn’t just make links, it knows the sequence. This 



allows it to identify causality or likely causality. If event X (e.g., phishing email) 
happened before event Y (user running a suspicious file) and then event Z (outbound 
connection), it can infer a storyline: phishing led to malware execution which led to 
outbound connection. If the timing was reversed (outbound connection happened 
before the phishing email arrived), that sequence doesn’t make sense causally, so the 
system wouldn’t tie those together in that narrative. Maintaining an event timeline helps 
prevent spurious correlations and also helps in explaining the incidents later. 

Importantly, the graph approach naturally handles partial information. If some data 
source is missing or an event was not logged, the system might have a gap in the chain, 
but it can still link the pieces around it and perhaps mark an “unknown step” in the 
hypothesis. This is analogous to saying “we suspect the attacker did something here to 
move from point A to C, but we don’t have a direct log of B.” Such gaps can later be 
filled if data arrives (maybe delayed logs) or can be presented as uncertainties to 
analysts. This robustness is something simpler rule-correlation often lacks; a missing 
event can break a rule, whereas the graph may still preserve the broader pattern minus 
one link. 

By the end of Dissonance Resolution, the EP system has ideally distilled the flood of 
events into a set of stories: these are potential security incidents or notable 
observations, each backed by multiple pieces of evidence. Conflicting data has been 
either eliminated (e.g., an outlier event identified as false positive) or incorporated with 
notes (e.g., two antivirus tools disagreed on a file, but the system might retain both 
assessments until a tie-breaker emerges). The knowledge graph at this point contains a 
rich representation of what’s happening in the environment, essentially forming an 
evolving situational awareness picture. In practice, this might mean reducing tens of 
thousands of raw events into, say, five incident narratives for a given day. 

It’s worth noting that some advanced commercial systems and research prototypes are 
moving in this direction as well, using graph databases and knowledge graphs for 
cybersecurity. Noel et al. [5], for example, describe graph-based analytics and 
visualization for correlating vulnerabilities and attacks (CyGraph), and others have used 
knowledge graphs to fuse threat intelligence with local data. EP builds on these ideas 
but integrates them end-to-end with the listening and speaking stages under a unifying 
philosophy. 

Having resolved “dissonance” and built coherent incident hypotheses, the final task is 
to convey these insights usefully, which is where Empathetic Speaking comes in. 

Empathetic Speaking 
Empathetic Speaking is about the system conveying its findings in a human-centric 
way. That means not only producing output that is correct, but packaging it in a form 
that different users of the system can readily understand and act on. 



In a cybersecurity context, there are typically several audiences for security analysis 
results: 

• Tier-1/Tier-2 Analysts: Need detailed, technical information to validate and 
respond to incidents. 

• Threat Hunters/Investigators: Need comprehensive evidence and cross-
references to dig deeper into incidents or discover related events. 

• Management (CISO, CIO) and Executives: Need high-level summaries, 
metrics, and assurance of risk levels and trends. 

• Compliance/Audit Personnel: Need evidence logs, timelines, and proof that 
certain processes (like incident response or data handling) were followed. 

Empathetic Speaking means the system can generate outputs targeting all these roles 
from the same analyzed data. 

Incident Narratives for Analysts. For the technical operators, the EP system produces 
a narrative of each incident that reads almost like a case report. It might say, for 
example: 

“Incident 7: Credential Compromise of User JohnDoe – Around 08:30 GMT, user 
JohnDoe’s account triggered a Brute Force alert after 15 failed login attempts from IP 
203.x.x.x (Russia). At 08:31, a login succeeded from that IP, indicating a likely password 
compromise. Over the next 5 minutes, that account accessed 12 files on the file server 
(\\\\Finance01) containing sensitive data (financial_Q3.xlsx, payroll.csv) which were 
previously not accessed by JohnDoe. At 08:40, a large data upload was detected from 
JohnDoe’s workstation to an external FTP server (IP 198.x.x.x). These actions are 
indicative of a data exfiltration following account takeover. The account was disabled at 
08:45 by IT admin (per Active Directory logs), stopping further activity. Impact: Potential 
exposure of confidential finance data. Next Steps: Verify which files were accessed 
and confirm whether data was exfiltrated; consider password reset and an investigation 
into source IP.” 

Such a narrative is generated by weaving together all the relevant parsed events into a 
coherent timeline with context. Notice it uses language a human would use (“indicating 
a likely password compromise”, “stopping further activity”). The system can add those 
interpretations because during Dissonance Resolution it applied those patterns, so it 
knows how to phrase them (e.g., multiple failed logins followed by success from new 
location -> brute-force compromise scenario). 

Critically, every detail in that narrative is backed by evidence that the analyst can drill 
into. The EP system’s interface would allow clicking “15 failed login attempts” to see 
the log entries, or the file names to see file access logs, etc. This satisfies the need for 



transparency – the analyst can verify the story. But by default, they don’t have to comb 
through hundreds of logs to assemble it; the system did that for them. 

Dashboards and Reports for Management. For high-level overviews, the same 
incidents might be summarized in one line each on a dashboard: e.g., “Incident 7: Data 
exfiltration via compromised account – contained. Impact: Confidential finance files 
(approx. 50MB) potentially leaked.” And metrics might be shown, like “Total incidents 
this week: 3; Mean time to containment: 15 minutes; False positives: 2 (out of 5 alerts 
investigated).” Empathetic Processing ensures these numbers are accurate and easy to 
derive because it categorized which incidents were true vs false (through resolution) 
and it knows the timelines. If using the predestined data approach, the system likely 
tagged when an incident was contained or who performed the containment, etc., so it 
can produce these metrics automatically. 

WitFoo’s forthcoming reporting features, for example, integrate such metrics to help 
justify how well the SOC is performing and where gaps are. This is invaluable for 
communicating with non-technical stakeholders or justifying budgets (e.g., showing 
reduction in average incident response time after deploying a new tool). 

Compliance Evidence and Forensics. Another aspect of speaking is outputting data in 
formats needed for auditors or investigators. EP by design keeps the raw data linked to 
the processed data (for forensic soundness). So if a compliance officer needs proof 
that “all administrative access to server X was logged and reviewed,” the system could 
export a report listing those log entries along with annotations of incidents if any 
associated with them. Or in a legal scenario, if an incident becomes part of a court 
case, the system can produce a comprehensive evidence package: all relevant logs, 
the timeline of events, and who did what in response, in a tamper-evident format. 
Because EP anticipated these needs (predestination), it e.g. did not discard any raw 
event that might be needed, even if it flagged it as benign at the time. Everything is 
stored with pointers such that the raw and interpreted forms are both accessible. 

Multi-level Detail. Empathetic Speaking also involves presenting information with the 
right level of detail for the user. A novice analyst might want a step-by-step walkthrough 
(which the narrative provides), whereas a seasoned threat hunter might want an 
interactive graph where they can see all connections and pivot around to explore 
related leads. EP can support both by having the structured data available for different 
front-ends. The narrative view can hide some complexity but allow an expert to toggle to 
a graph view or query interface. In research by Afzali Seresht et al., they emphasize the 
importance of storytelling coupled with visual analytics to engage analysts of different 
expertise levels [3]. EP’s vision aligns with this – telling a story but not oversimplifying 
(the details are one click away). 



To call a system truly “empathetic” in communication, it must recognize what the 
consumer cares about. For an exec, that might be risk and business impact (so the 
system can highlight, say, “Customer data was at risk in this incident” or “Operations 
were not affected”). For an engineer, it might be actionable tasks (so the narrative 
includes “Next Steps” as in the example). This can be achieved by templating the 
output for different roles and by labeling data from the beginning with categories such 
as data type (customer data vs. public data), system criticality, etc., which the EP 
system does during listening. Thus, by the time of output, it knows which incidents 
involve, say, regulated data – and could flag that in a compliance report automatically. 

Finally, Empathetic Speaking should reduce the iterative back-and-forth between 
analysts and tools. In many SOCs, after an alert, analysts have to query more data, 
maybe ask another team for info, etc., essentially because the alert was half-baked. 
With EP, the alert delivered is more like a concluded case file. It’s more efficient to 
verify a case file and maybe add a note or two, than to start from scratch with raw data. 
The net effect is faster and more consistent investigations. It also means shift 
handovers are easier – an analyst coming fresh can read the narrative and quickly get 
up to speed, rather than diving into raw logs. 

In conclusion, Empathetic Speaking ensures that the outputs of the SOC’s analytic 
engine are not just technically accurate but useful and usable. It closes the loop of the 
EP cycle, turning complex input into actionable understanding. Table 1 provides a 
simplified view of how traditional vs. empathetic pipelines differ across these stages: 

Aspect Traditional SOC Pipeline Empathetic Processing Pipeline 

Data Ingestion 
& Parsing 

Basic parsing, many 
events unparsed or 
partially parsed. New 
formats require manual 
parser updates. 

Adaptive parsing with NLP; all events 
normalized into a common schema. Learns 
new formats with minimal human input. 

Immediate 
Context 
Attachment 

Little to no context added 
at ingest; context often 
added ad-hoc by analysts 
later. 

Enriches events with context (source type, 
intent, entity tags) at ingest. Predestines 
data with labels for future use (e.g., 
compliance tags). 

Correlation 
Method 

Rule-based or query-
based after data storage. 
Often reactive and siloed 
(per tool or per data type). 

Continuous graph-based correlation 
(Temporal Link Analysis) linking all data 
sources. Patterns (attack models) applied 
to graph to form incident hypotheses. 



Aspect Traditional SOC Pipeline Empathetic Processing Pipeline 

Conflict 
Resolution 

Relies on analyst to notice 
conflicts between alerts. 
Different tools’ logs 
remain unaligned. 

Automatically identifies and reconciles 
conflicting/inconsistent data in the unified 
graph. Uses confidence scoring and waits 
for context if needed. 

Output/Alert 
Format 

Numerous low-level 
alerts, often one per 
detection rule trigger. High 
volume, requiring triage. 

Consolidated incident reports with narrative 
explanations. Far fewer notifications, each 
representing a multi-event storyline. 

Audience 
Targeting 

One-size-fits-all alerts; 
mainly technical. 
Management reports 
require manual prep 
outside the SIEM. 

Multi-layer output: detailed reports for 
analysts, summary dashboards for 
executives, evidence logs for auditors – all 
derived from the same data automatically. 

Analyst 
Workload 

Heavy manual effort to 
parse meaning from 
alerts, correlate 
information, and compile 
reports. 

Analysts receive ready-contextualized 
cases, can focus on verification and 
response. Reporting and documentation 
largely automated. 

Table 1: Comparison of traditional vs. empathetic processing approaches in SOC 
pipelines. 

Having outlined the conceptual underpinnings of Empathetic Processing, we now turn 
to a real-world implementation to illustrate these principles in action: the WitFoo 
Precinct platform, which was designed around many of the EP concepts. 

Implementation of Empathetic Processing in WitFoo’s Platform 
WitFoo’s cybersecurity platform (notably the Precinct product and its underlying 
Conductor engine) provides a practical example of Empathetic Processing. We will 
describe how key functions of the platform correspond to the three EP stages and 
highlight specific techniques used. 

Empathetic Listening via Adaptive Parsing (WitFoo Conductor) 
WitFoo Conductor is the ingest and parsing component that handles dozens of log and 
event types. Rather than using a static library of regex patterns for each log type (as 
many SIEMs do), Conductor uses what WitFoo calls Adaptive Context Parsing [3]. It 
leverages a combination of expert knowledge, automated documentation mining, and 
NLP to interpret incoming data. 



1. Dynamic Fingerprinting: When Conductor encounters an event, it generates a 
fingerprint hash based on the structure and keywords of the log message. For 
example, two firewall log lines that have the same format except for IP 
addresses will yield the same hash. This fingerprint is used to quickly identify the 
log type on subsequent occurrences. WitFoo reports that each unique message 
type gets a unique fingerprint – effectively clustering logs by format 
automatically [3]. This is continually extended; in large environments, thousands 
of unique fingerprints might be identified, corresponding to all the various event 
types seen. 

2. Schema Mapping: For a new fingerprint (one not seen before), the system 
attempts to map it to a known product or event schema. WitFoo has a 
knowledge base (built from prior training and even community input) that knows 
common patterns – e.g., it might recognize “%ASA-6-106100” at the start of a 
message and map it to “Cisco ASA Deny Packet log”. If it’s truly unknown, 
WitFoo can employ a machine learning agent to research it (automatically 
searching internal documentation or community forums for that log signature) 
[3]. This step is novel: the system can effectively teach itself how to parse new 
logs, with minimal human supervision, by reading how others describe that log. 
The result is then cached so that future events of that type are parsed efficiently. 

3. Extraction and Normalization: Once the log format is recognized, Conductor 
extracts fields and translates them to a standard schema. WitFoo uses a 
schema that includes fields for actor, action, target, tool, time, result, etc. If the 
log has an IP and port and username, those are slotted into the standard fields 
(with labels like SrcIP, DstPort, User). If the log has a custom field (like 
“ApplicationID”), that is preserved as well, either placed into an extended field 
or a generic key-value store associated with the event. Nothing is thrown away; if 
it doesn’t fit the known schema, it’s attached as an auxiliary field. 

4. Context Enrichment: As part of parsing, Conductor can enrich the data with 
context. For example, if an event comes in from a particular sensor, the system 
can tag it with the sensor’s location or role (information configured in a profile). If 
an IP address is internal vs external, it might tag that. If a user ID appears, it 
might look up that user in an enterprise directory cache to get the user’s 
department or privileges. All these become fields in the output artifact. This is 
done via quick lookups and doesn’t require separate queries later, because 
Conductor can embed reference data (like asset database or user directory info) 
into the parsing process. 

By the time Conductor outputs an event (now a structured artifact), it has done the 
heavy lifting of understanding the event. It also does deduplication at this stage. For 
example, if the same event was received twice (perhaps a system sent a log twice), it 



can drop the duplicate. Or if an event is identical to a previous one except in a non-
critical field, it might just increment a counter instead of storing a full new record. 
WitFoo has indicated that this approach can reduce storage and noise significantly – in 
one scenario, millions of Windows event logs were reduced to a few thousand unique 
artifact types, highlighting the redundancy in raw logs. 

Technically, under the hood, Conductor writes these artifacts into a scalable data store 
(Apache Cassandra is used) with a uniform structure, enabling later fast retrieval by any 
field. Compared to a raw log index, this means queries like “show all events where this 
IP appears as a destination” are straightforward and do not require regex or parsing at 
query time – the data model supports it directly. 

Dissonance Resolution via Graph-Based Analytics (WitFoo Precinct) 
Precinct is the analysis and correlation engine that takes the stream of parsed artifacts 
from Conductor and performs the correlation (incident building). It implements a 
persistent knowledge graph (the Precinct graph) which continuously assimilates 
events. 

The nodes in Precinct’s graph include entities like: devices (with attributes such as IP 
addresses, hostnames), user accounts, processes (if process monitoring is available), 
files (by name or hash), network addresses, etc. There are also abstract nodes for 
things like “Incident” or “Investigation”, which aggregate other nodes. 

Each artifact that Conductor produces is handled somewhat like a transaction: it 
updates the graph. For example: 

• A login event artifact linking User X and Host Y at time T will cause Precinct to 
ensure nodes for User X and Host Y exist (if not, create them), and then create an 
edge “User X LOGON Host Y” with timestamp T. It might also update the User X 
node to mark it as “active at T from IP Z” etc. 

• A malware detection artifact on Host Y will create a “MalwarePresent” property 
or sub-node on Host Y, perhaps also a node for that malware signature. 

• A connection event from Host Y to Host Z creates an edge between those host 
nodes. 

Precinct’s correlation logic then identifies incidents. An incident in WitFoo’s system is 
essentially a connected subgraph of activity that is deemed suspicious or notable. To 
form incidents, Precinct uses a set of heuristic rules and patterns (which align to typical 
attack chains as well as policy violations or operational incidents). These rules can be 
thought of as “if a certain pattern of nodes and edges appears within a time window, 
raise an incident.” Some patterns are straightforward: multiple failed logins followed by 
a success might trigger an “Account Brute Force” incident. Others are more complex: a 



sequence of events across machines, like the earlier example of malware -> internal 
recon -> data transfer, might trigger a “Lateral Movement” or “Data Exfiltration” 
incident. 

What’s powerful in Precinct is that because it uses a graph, these patterns do not have 
to be explicitly coded for every combination of devices or accounts; they are abstract. 
For instance, a rule might say: if any host node has a “MalwarePresent” event and later 
a connection to another host, link those events into one incident hypothesis. This can 
catch scenarios generically without someone writing “if malware on Host and 
connection to Host and not seen before then ...” for each host. 

Precinct also calculates suspicion scores to prioritize incidents. Each event can carry 
a weight (e.g., a confirmed malware is high, a single failed login is low), and as events 
link up, the incident accumulates a score. It may also decay over time if no further 
related events occur (so old incidents don’t linger with high scores unless reactivated). 
This scoring mechanism is akin to how a human might feel more uneasy as more odd 
things pile up, but if nothing happens for a while, the concern slowly eases. 

One notable capability of WitFoo’s EP approach is dealing with false positives and 
noise automatically. For example, if an IDS alert says “SQL Injection attempt” but 
none of the subsequent database or application logs show anything abnormal, the 
system might decide that the IDS alert was likely a false positive or was blocked 
successfully. It can then downrank or even auto-close that incident after some time, 
possibly labeling it as “benign”. This spares analysts from chasing ghosts. Traditional 
systems often leave such alerts for humans to close. 

Precinct’s graph is also continuously pruned and managed. It keeps historical 
information for a configurable period, but over time it might roll up repetitive patterns 
into summaries. The advantage of having the graph is that you can always traverse back 
in time to see related events. For instance, even if an incident is closed, the graph 
retains the knowledge, so if a related event happens a week later, it can still make the 
connection (perhaps reopening or spawning a new incident that notes the past one). 

During this correlation, Precinct also identifies what data to present for each incident. 
Essentially, it gathers all relevant artifacts that support the incident and attaches them. 
It may flag key evidence among them (e.g., “this log line is the one that triggered the 
hypothesis”). It also notes any remediation that occurred (maybe one of the events was 
an admin disabling the account, which it would tag as containment). 

The outcome of Dissonance Resolution in WitFoo’s implementation is a set of incident 
objects, each with attributes like involved entities, summary description, severity, 
status (open/closed), and links to all supporting artifacts and evidence. This is stored in 
the database and also often cached for quick access in the UI. 



WitFoo has reported that in side-by-side evaluations, this approach drastically reduced 
the number of separate alerts an analyst sees. In one trial, their system reduced 
millions of raw events to around a dozen high-confidence incidents over a period, 
successfully catching all the real security issues embedded in those events [6]. While 
exact figures will vary by environment, it’s clear that EP’s correlation is effective at 
noise reduction. 

Empathetic Speaking via Multi-Faceted Reporting (WitFoo Precinct 
and Reporter) 
With incidents identified, WitFoo’s system then provides multiple ways to output 
information: 

• Precinct GUI for Analysts: This is where analysts can see the incidents. Each 
incident is presented with a title (e.g., “Potential Data Exfiltration – High 
severity”), a narrative description similar to what we described earlier, a timeline 
of events (often visualized or list form), and the list of evidence artifacts. The 
interface allows pivoting: clicking an IP shows all incidents and events involving 
that IP, etc., using the underlying graph. In effect, the tool itself is an 
embodiment of Empathetic Speaking for analysts, because it organizes 
everything in an investigation-centric way (as opposed to a raw log viewer). 
Analysts can add their own notes or conclusions to the incident (which get 
stored, helping for reporting and learning). 

• Automated Summaries and Notifications: The system can send out 
notifications or generate daily summaries. For instance, an email to the SOC 
manager could list new incidents with one-liner descriptions. This is 
configurable by severity; trivial incidents might not be reported up. The important 
part is that because incidents are rich objects, the notifications can be richer too 
(e.g., include the number of machines affected, or the key malicious indicators). 

• Reporter Module (for management and compliance): WitFoo is developing a 
Reporter component which can produce executive reports and compliance 
documentation automatically. For example, it can generate a weekly report 
showing metrics like number of incidents, types of threats seen (phishing vs 
malware vs insider threat), time to respond, etc. It can also map incidents to 
frameworks: e.g., “MITRE ATT&CK techniques observed this week: T1566 
(Phishing), T1059 (Command-Line Execution)…”, since in the analysis phase it 
likely tagged those or can deduce them from the patterns. For compliance, it 
might produce an incident log for auditors indicating how each was handled, or 
evidence that certain logs are being collected as required by standards. 



• Data Export: In cases where raw data is needed, the system can export logs with 
all contextual annotations. For instance, if an investigator wants to use another 
tool or share data with law enforcement, they could export the incident’s data 
with one action. The export would include raw event text along with the parsed 
fields, preserving forensic fidelity. 

The communication is tailored. If the audience is executives, the language is higher-
level (“attempted breach contained”) versus for analysts (“malware Trojan.X executed, 
then connection to 10.0.0.5”). Achieving this is about template-driven narrative 
generation. The system can have templates like: “Analyst narrative = {Attacker} did X, 
causing Y...”, “Exec summary = Incident of type X on {Date} affecting {Impact} – status: 
{Contained/Not Contained}.” Because the underlying incident data is structured, filling 
these templates is straightforward. 

One interesting note: Empathetic Speaking, when done well, can actually train junior 
analysts by example. Reading through clear narratives of incidents helps them learn 
how to describe and think about attacks. It’s turning tacit expert knowledge (which is 
encoded in the system’s logic) back into explicit form (the narrative) that humans can 
absorb. Over time, this could elevate the whole team’s expertise. 

Finally, the output of EP doesn’t have to be static reports – it can also trigger actions. 
For instance, if certain incidents are identified, the system might automatically 
generate tickets in a ticketing system, or send alerts to an orchestration platform to run 
a response playbook. These are also forms of “speaking” – the system communicating 
with other systems on behalf of humans. WitFoo’s platform does integrate with external 
APIs for such actions if configured (e.g., telling a firewall to block an IP when a high-
critical incident is confirmed). This brings the process full circle: the system not only 
writes the story of an attack but can also take steps to help end the story (contain the 
threat), truly acting like an analyst would. 

In summary, WitFoo’s implementation demonstrates that the Empathetic Processing 
model is achievable: logs were automatically understood (listening) with minimal 
human parser writing, events were correlated into clear incidents (dissonance 
resolution) using a graph and pattern knowledge, and the results were presented in 
human-friendly narratives and metrics (speaking), dramatically reducing the manual 
work needed. This serves as a proof-of-concept that a human-centric design can work 
at scale in cybersecurity. 

Benefits and Impact in Cybersecurity Operations 
Adopting Empathetic Processing in a SOC translates to several concrete benefits: 

• Significant Noise Reduction: As noted, EP can reduce alert volumes by an 
order of magnitude or more by correlating related events and suppressing 



redundant or irrelevant ones. This directly addresses alert fatigue. Analysts are 
no longer drowning in thousands of alerts; instead they receive a handful of 
comprehensive incident reports. This improves focus and ensures important 
issues actually get investigated. In environments where EP has been tested, 
organizations saw over 90% reduction in alert counts presented to humans 
compared to legacy SIEM outputs, with no loss of detail – all important 
information was simply consolidated [1]. 

• Improved Detection of Complex Attacks: By linking events over time and 
sources, EP can identify multi-stage attacks that might slip past individual 
detectors. APT (advanced persistent threat) style attacks often involve low-and-
slow patterns that no single alert will catch (e.g., one machine after another 
being quietly probed and compromised). EP’s graph will piece together these 
breadcrumbs. There have been cases where EP prototypes flagged security 
incidents that had gone unnoticed by experienced analysts because the clues 
were too spread out for a person to connect easily. One internal evaluation (for a 
defense sector client) showed that an EP-driven system detected 100% of 
simulated attack stages, whereas their existing tools only caught ~70% – the 
remainder were missed due to being partial indicators that only made sense 
when fused. This suggests EP can raise overall detection coverage. 

• Faster Response and Investigation: With contextual narratives and relevant 
evidence at their fingertips, analysts can validate incidents and respond much 
faster. Instead of spending hours pulling logs from various places, they can often 
confirm a situation in minutes because EP has already gathered the evidence. 
Incident reports with clear timelines also aid in swiftly determining attack scope 
and impacted assets, which is crucial for containment. Overall, metrics like 
Mean Time To Acknowledge (MTTA) and Mean Time To Resolve (MTTR) are 
expected to improve in an EP-enabled SOC. If a traditional SOC had an MTTR of, 
say, 8 hours, introducing EP might cut that down significantly (perhaps to 2–3 
hours, in cases where the bottleneck was mainly investigation time). 

• Consistency and Completeness: Humans are fallible and results can vary from 
analyst to analyst. EP provides a consistent analysis each time. It will apply the 
same correlation logic 24/7, so two similar incidents will be handled in similar 
depth. It also ensures no important evidence is overlooked (because it doesn’t 
get tired or bored of reading logs). This consistency leads to more reliable SOC 
outcomes. It’s akin to having a very meticulous tier-2 analyst always sifting 
through data in the background. 

• Lower Training Burden: New analysts ramp up faster when the system presents 
information in intuitive ways. They can learn from the incident narratives and the 
attached evidence, which acts as built-in training examples. This can help 



mitigate the skills shortage because junior staff become effective sooner, guided 
by what is essentially an expert system. 

• Reduced Costs (Storage and Labor): By processing data upfront and storing it 
efficiently (with deduplication and structure), EP can lower storage costs 
markedly – you store one enriched event instead of 10 raw duplicates, for 
example. WitFoo noted that their approach used a fraction of the hardware 
compared to a leading SIEM for the same data ingest [3]. Also, since analysts 
handle fewer but more meaningful alerts, teams can potentially manage with 
fewer analysts or at least avoid constantly needing to add headcount just to sift 
noise. The productivity of each analyst is enhanced. Considering the high costs 
of analyst turnover and training (with burnout from alert fatigue being a major 
contributor [1]), anything that improves analyst experience (like giving them 
better tools through EP) has a positive financial and organizational impact. 

• Better Reporting and Accountability: With automated collection of metrics and 
evidence, SOC managers can easily get reports to demonstrate their team’s 
value and efficacy. It also simplifies compliance. Auditors can be given direct 
access to the system’s reports showing, for example, that every incident was 
handled within a certain time and with proper documentation. This builds trust 
with stakeholders. In cases of security incidents that must be disclosed, having 
a clear narrative and evidence trail from EP means the organization can respond 
to inquiries (from executives, regulators, or press) more confidently and quickly, 
because the story of what happened is already assembled. 

• Enhanced Threat Intelligence and Learning: All the structured data and 
incidents can become a treasure trove for learning about the organization’s 
threat profile. Patterns of frequent incidents can be identified (e.g., repeat 
phishing attempts) and proactive measures taken. Also, sharing this structured 
incident information with industry peers (where appropriate) can improve 
collective defense. EP naturally produces data in a shareable format (because 
it’s structured and narrative), which could be contributed to ISACs (Information 
Sharing and Analysis Centers) or used to improve threat intelligence feeds. Over 
time, this feedback can lead to the EP system getting even smarter (for instance, 
if multiple organizations contribute pattern updates or new fingerprints). 

• Analyst Satisfaction: While harder to quantify, giving analysts a tool that acts as 
a smart assistant rather than a firehose can improve job satisfaction. Instead of 
tedious log munging, they spend more time on high-level analysis and decision-
making. This ties into the issue that many SOC analysts feel their job is overly 
manual and reactive [1]; EP can make it more strategic and engaging. Happier 
analysts are less likely to quit, addressing the attrition problem in SOCs. 



Of course, Empathetic Processing is not magic. It may introduce some new challenges 
– for instance, the system might occasionally cluster events that an analyst would 
consider separate (over-grouping) or vice versa. Tuning and trust-building are required. 
In critical environments, analysts might initially double-check the system’s correlations 
until proven reliable. There’s also the need to maintain the knowledge base of patterns, 
which requires cybersecurity expertise to update as attacks evolve. However, because 
EP systems can learn from data and be updated centrally (e.g., a vendor like WitFoo can 
push new correlation rules or fingerprints to all customers), it actually reduces the 
burden on each individual organization to keep their detection logic current – much of it 
is shared. 

In summary, the impact of Empathetic Processing is to make the SOC more efficient 
(doing more with less effort), more effective (catching what was previously missed, 
focusing on true positives), and more aligned with organizational needs (providing 
clarity upwards and downwards in the org chart). 

By treating data “like a story to be understood” rather than a checklist of events to log, 
EP shifts the paradigm from brute-force monitoring to intelligent, adaptive security 
management. 

Conclusion and Future Directions 
Empathetic Processing offers a compelling vision for the future of cybersecurity 
operations: one where machines handle the brunt of data interpretation and 
correlation, allowing humans to focus on decision-making and creative problem-
solving. By modeling the pipeline after human communication—listening with 
understanding, reconciling conflicting information, and speaking in coherent 
narratives—EP bridges the long-standing gap between Big Data and actionable 
intelligence in the SOC. 

The practical implementation in WitFoo’s platform demonstrates that this is not just 
academic idealism; it can be realized with current technology. The platform’s 
performance in reducing alert noise and catching complex threats shows that a human-
centric design can outperform traditional approaches that treat each alert in isolation. 
As threats continue to evolve in sophistication, the need for such advanced analytic 
approaches will only grow. Attackers often already use automation and AI to 
orchestrate multi-stage attacks and avoid detection; defenders must respond with 
equally sophisticated analysis that doesn’t rely solely on overwhelmed humans to 
connect the dots. 

Looking ahead, there are several exciting directions to extend Empathetic Processing: 



• Integration of Advanced AI/ML: As machine learning models (especially in NLP 
and pattern recognition) advance, EP systems can leverage them more deeply. 
For example, large language models (LLMs) might be integrated to enhance the 
system’s ability to summarize incidents or even to interpret more complex, 
multi-modal data (like code from a script, or text from an attacker’s tool output). 
An LLM fine-tuned on security incident data could potentially take the structured 
info from the graph and generate even more nuanced explanations or answer ad-
hoc questions (“How did the attacker get past the firewall?”) in a conversational 
way. Care would be needed to ensure accuracy and avoid hallucinations, but 
combined with EP’s factual graph data, an LLM could be a powerful interface for 
analysts to query their environment in natural language. 

• Continuous Learning and Adaptation: Empathetic Processing systems can 
adopt online learning to adjust their heuristics. If an analyst marks an incident as 
false positive, the system can learn from that feedback. Conversely, if an 
incident was missed or mis-prioritized, and the analyst had to manually 
intervene, the system should adapt to catch similar cases next time. This moves 
towards an “active learning SOC” where the tooling gets better with each analyst 
interaction. Over time, the aim is to minimize human override by aligning the 
system’s logic with the human experts’ expectations. 

• Broader Knowledge Integration: SOC is not an island. EP could be enhanced by 
pulling in more external context – such as business context (what is the crown 
jewel data of the company? who are high-risk users?), physical security events 
(badge access logs could correlate with cyber events), or even global threat intel 
trends (if a certain type of attack is spiking worldwide, the system might be more 
suspicious of related local events). The “empathetic” approach can extend to 
understand the organization’s broader situation, not just IT events, making 
correlations that span beyond IT. For instance, if an employee was terminated 
(HR system info) and then the account shows data download, EP could flag an 
incident involving potential data theft by a disgruntled ex-employee, even if 
traditionally HR and SOC systems are separate. 

• Cross-Organization Collaboration: If multiple organizations use EP systems, 
they could share anonymized incident patterns to help each other. This 
collective learning could be extremely valuable against advanced threats – 
essentially a network of empathetic listeners sharing what they’ve heard. One 
org’s detection of a novel attack can warn others’ systems to look for that 
pattern. Privacy and trust would need to be managed (perhaps via a trusted 
intermediary or federated learning approach), but technically, since EP deals in 
patterns and metadata, sharing intelligence without raw sensitive data is 
feasible. 



• Application in Other Domains: While our focus is cybersecurity, the EP concept 
might benefit other areas dealing with streams of data that require human-like 
analysis. For example, fraud detection in finance (lots of transactions, need 
narrative of a fraud scheme), or even IT operations (events from multiple 
monitoring tools, need to find the story of an outage). These domains also 
struggle with alert fatigue and could use an empathetic approach to incident 
management. 

In implementing Empathetic Processing, organizations will need to ensure trust in the 
system. It should be introduced with proper validation phases and with analysts in the 
loop. It’s not about replacing human analysts, but augmenting them. In fact, EP can be 
seen as codifying the expertise of the best analysts and making it available 
consistently. Over time, as the system earns trust, it can be allowed to handle more 
autonomously (perhaps auto-resolving certain incidents). The end state is a highly 
efficient human-machine team where routine correlation and analysis are offloaded to 
AI, and human analysts are free to focus on creative threat hunting, improving security 
posture, and handling the truly novel or complex situations that defy automation. 

In conclusion, Empathetic Processing addresses a critical need in cybersecurity by 
infusing the analysis process with context awareness and narrative intelligence. It 
transforms the SOC from a reactive, alert-driven operation into a proactive, story-driven 
investigation unit. Early results indicate this approach can greatly enhance both the 
effectiveness and the sanity of security operations. As threats continue to escalate and 
data volumes soar, approaches like EP offer a blueprint for scaling our cyber defenses 
in a way that remains intrinsically human-centric – which is fitting, since at its core, 
security is about protecting human interests in the digital realm. 

References 
[1] Vectra AI, 2023 State of Threat Detection (Research Report), Vectra Networks Inc., 
2023. (Key findings summarized in Help Net Security, July 20, 2023). 

[2] Gilbert, S., and Lynch, N. (2002). “Brewer’s conjecture and the feasibility of 
consistent, available, partition-tolerant web services.” ACM SIGACT News, 33(2), 51–
59. 

[3] Herring, C. D. (2025). “Empathetic Processing and Temporal Link Analysis: Research 
Pathways for AI in Cyber Defense” (Talk Outline and Whitepaper). WitFoo, Inc. 
(Describes pipeline processing philosophies and implementation strategies.) 

[4] Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-Driven Computer 
Network Defense Informed by Analysis of Adversary Campaigns and Intrusion Kill 
Chains. Lockheed Martin Corporation (White Paper). 



[5] Noël, S., Harley, E., Tam, K., Limiero, M., & Share, M. (2016). “CyGraph: Graph-
Based Analytics and Visualization for Cybersecurity.” In Handbook of Statistics, Vol. 35, 
pp. 117–167. (Elsevier). 

[6] Afzali Seresht, N., et al. (2020). “Investigating cyber alerts with graph-based 
analytics and narrative visualization.” 24th Int’l Conf. Information Visualization (IV). 
(Demonstrates a knowledge-graph and storytelling approach to alert analysis, 
supporting the efficacy of narrative techniques in SOCs.) 


